Catalytic Combustion of Carbon Monoxide over YBa₂Cu₃O_x Electroconductive Catalyst

Eiichi KIKUCHI,* Tatsuya ISHIHARA, and Masaki HONDOH

Department of Applied Chemistry, School of Science and Engineering, Waseda University,

3-4-1 Okubo, Shinjuku-ku, Tokyo 169

Yittrium barium copper oxide $(YBa_2Cu_3O_x)$, known as high-Tc superconductor was used as an electroconductive catalyst and its characteristics in carbon monoxide oxidation were investigated. When direct current of 3 V was charged, $YBa_2Cu_3O_x$ was heated to about 450 °C, at which it catalyzed CO oxidation.

Catalysts are recently gaining wide roles in many fields, particularly in environmental technologies. Accordingly, requirements for catalyst performance are getting harder. Removal of hydrocarbons emitted from automobile in the period of cold start is one of the most difficult tasks for catalyst to perform. If a solid has a proper electric conductivity to heat its body quickly to a temperature where it can work as a catalyst, a new catalytic system would be realized. We should call such a catalyst an electroconductive catalyst. Such a catalyst may work as a combustion catalyst to clean up the cold-start-exhausts of automobile.

 $YBa_2Cu_3O_x$, known as high-Tc superconductor has recently gathered attention not only due to its electric and magnetic characteristics but also due to its intrinsic catalytic activity for oxidation. ¹⁻⁷) The purpose of this study is to investigate the self-heating property of $YBa_2Cu_3O_x$ induced by DC voltage charged and its catalytic activity for CO oxidation.

YBa₂Cu₃O_x catalyst was prepared by a conventional solid state reaction: Powders of Y₂O₃, BaCO₃ and CuO were thoroughly ground in a mortal at a molar ratio of 1:2:3. The mixture was heated in air at 940 °C for 1 h, ground again, and this procedure of heating and grinding was repeated. It was then heated at 940 °C for 4 h to yield black powder. X-ray diffraction analysis using a RAD I-C, CuK α , Rigaku Co.,Ltd., revealed that the powder consisted of a single phase of YBa₂Cu₃Ox. The specific surface area measured by the BET method (N₂ adsorption) was 0.8 m² g⁻¹.

Approximately 5 g of the YBa₂Cu₃O_x powder was pressed under 500 kg cm⁻² for 2 min into a pellet (13

mm $\phi \times 8$ mm length), which was sintered at 940 °C for 1 h. The catalyst temperature during activity tests was measured by use of thermocouple inserted through a hole (3 mm ϕ) made in the center of this sintered pellet. Electrodes were connected to the sintered pellet as follows: Silver electroconductive paint (DOTITE Type K-1056, Fujikura Kasei Co., Ltd.) was spread on both top and bottom surfaces of the pellet, dried in air at 650 °C for 10 min, and silver wires (1 mm ϕ) were attached to the both surfaces of the pellet with silver paint and then with alumina adhesive (CERAMABONDTM 503, Aremco Product Inc.) for reinforcement. After attachment of silver electrodes as shown above, YBa₂Cu₃O_x was used in reaction. No catalytic activity was exerted by the silver conductive paint, silver wires, and alumina adhesive.

Catalytic activity for CO combustion was measured in a continuous flow reactor operated under atmospheric pressure. The structure of the reactor is shown in Fig. 1. The composition of reactant gas was 2% CO, 1% O₂, and He balance. The total gas flow rate was 100 cm³ min⁻¹. Prior to a measurement, the catalyst was heated in a stream of He at 400 °C for 1 h.

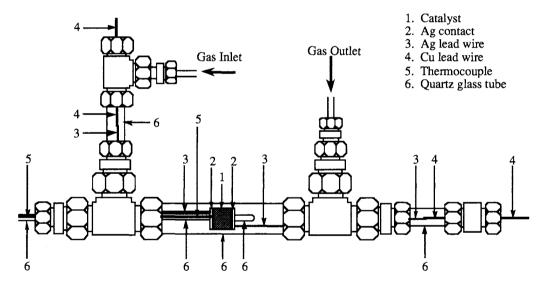


Fig. 1. Schematic diagram of experimental reactor.

CO combustion was carried out by either heating the catalyst pellet with charging a constant voltage by use of a DC power source (EX-375-L, Takasago Corporation), or in an electric furnace under isothermal condition. Exit gas from the reactor was analyzed by use of an on-line gas chromatography (GC-8AIT, Shimadzu Corporation). Chromatographic separation was achieved using an active carbon column (80/100 mesh, 2 m, G.L.Science Inc.).

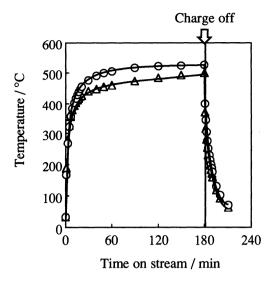
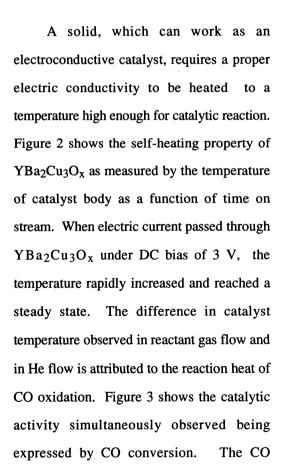



Fig. 2. Time on stream variation in temperature of $YBa_2Cu_3O_x$ under the charge of 3 V. O , CO $2\% + O_2$ 1% / He ; Δ , He .

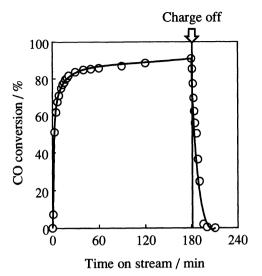


Fig. 3. Time on stream variation in CO conversion. Same reaction conditions as in Fig. 2.

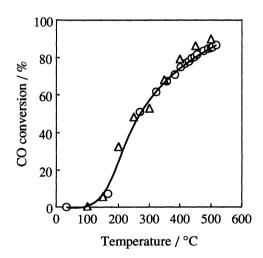


Fig. 4. Catalytic activity of $YBa_2Cu_3O_x$ for the combustion of CO.

- O, Under the DC bias of 3 V;
- Δ , Under isothermal condition.

conversion increased quickly when charged. These results show that YBa₂Cu₃O_x satisfy previously mentioned requirements for electroconductive catalyst.

The catalytic activity of YBa₂Cu₃O_x under isothermal condition was measured and compared with the results observed for the same catalyst under DC bias of 3 V in Fig. 4 as a function of reaction temperature. There was no appreciable difference in the level of CO conversion with and without electric current. This means that the catalytic activity is a sole function of catalyst temperature, and the rise in temperature of the catalyst solid is caused by the Joule's heat. In other words, there is no effect of the local electric fields caused by electric current upon the catalysis of YBa₂Cu₃O_x. Consequently, it is deduced that the two important features required for electroconductive catalyst, namely electric conductivity to heat up the catalyst body and catalytic activity, can be discussed independently.

References

- 1) A. Jiang, Y. Peng, Q. Gao, H. Yuan, and J. Deng, Catal. Lett., 3, 235 (1989).
- 2) I. Halasz, A. Brenner, M. Shelef, and K. Y. S. Ng, J. Catal., 126, 109 (1990).
- 3) J. C. Otamiri and S. L. T. Andersson, Appl. Catal., 73, 267 (1991).
- 4) I. J. Pickering and J. M. Thomas, J. Chem. Soc., Faraday Trans., 87, 3067 (1991).
- 5) J. C. Otamiri, J. E. Crow, and S. L. T. Andersson, J. Catal., 138, 562 (1992).
- 6) P. Salvador, J. Phys. Chem., 93, 8278 (1989).
- 7) L. G. Tejuca, L. G. Fierro, and J. M. D. Tascon, Adv. Catal., 36, 238 (1989).

(Received August 3, 1994)